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Uncertainty Quantification
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Physical Systems:

Display random and systematic variation- geometry, ma

boundary conditions, initial conditions, excitations

Vary from one realization to the next

Display behavior that cannot be precisely measured

rtainty occurs in various forms:

Irreducible, variability, aleatoric

Reducible, epistemic, subjective, model form uncertaint



Uncertainty Quantification
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alysis and Design

–To assess the reliability of physical systems.

–To establish designs that satisfy pre-established reliability

–To establish sensitivities to key uncertainties

del validation, certification, and accreditation

–As defined in the DOE Defense Programs (DOE/DP) ASC
validation is the process of determining the degree to w
model is an accurate representation of the real world fro
of the intended model applications.

–Convey confidence in predictions to decision makers
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tical Approach:

del components of  as Random Variables or Fields, 
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M . X,( )f U

: vector of uncertain parameters
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X

U : output(s) of system

 M: a deterministic mapping

: input(s) to system
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Probabilistic/Statistical Approach: Essential
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ments of a Statistical Approach:

lusion: Need a Generalized Outlook.

ntial Elements of a Statistical Approach:

ndom External Inputs

pagation Techniques
–Analytical Reliability Methods; Sampling; Response Surface

Approximations; Stochastic Finite Element Methods.

aracterization of Models
–Verification and Validation.
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Anatomy of Global Uncertainty
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Anatomy of Global Uncertainty
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E g U( ) M X,[ ]

      

- Random Vibration
- Earthquake Engineering
- Ocean Engineering
- Weapons Applications:
      Launch Shocks/Re-entry Loads,
      Penetration Loads,
      Hostile Environments

Uncertainty due to External Loads: f( )
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E g U( ) M X,[ ]
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certainty Propagation:

ffects of parametric uncertainty:
Intrinsic variabilities, Tolerances,
Lack of repeatability

X( )



Anatomy of Global Uncertainty

E



Engineering Sciences Center

〈 〉
             

E M{ }
          

E g U( ) M X,[ ]

      

E g U( )[ ]=



Uncertainty Quantification at Sandia-NM
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KOTA (Design Analysis Kit for OpTimizAion)/UQ
–Framework for multi-level, parallel computation: ASCI-lev

optimization, nondeterministic analysis, response surfac
design of experiments, optimization under uncertainty

lynomial Chaos and Stochastic Finite Elements
–Analysis of response of stochastic systems

istemic Uncertainty
–Non-Probabilistic Approach, Probabilistic Approach, Mod

nsitivity Analysis



Objectives of Toolkit
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er fundamental engineering questions:
hat is the best design?
w safe is it?
w much confidence in my answer

tional motivations:
use tools and interfaces
verage optimization, UQ, et al.
nconvex, nonsmooth design spaces → state-of-the-art methodologie
CI-scale applications and architectures → scalable parallelism
 a pathfinder in enabling M&S-based culture change at Sandia

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

DesignModel
Parameters Metrics
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NG ion optics
NG power supply
AF&F subsystem
laydown, gas transfer

Coatings consortium
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CTH explosives performance

ign optimization of engineering applications
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rview of DAKOTA framework

Iterator

Optimizer ParamStudy

SGOPTNPSOLDOT OPT++

Least Sq.E

InterfaceParameters

Model:

Design
continuous
discrete

Uncertain
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histogram
State
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Application
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Iterator

Model

Iterator
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Optimization/UQ Projects
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TA project (optimization with engineering simulations):
Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845
PI - Mike Eldred, 9211, mseldre@sandia.gov, 844-6479
Team members - Tony Giunta, Bill Hart, Bart van Bloemen Waanders
http://endo.sandia.gov/DAKOTA/

TA/UQ project (analytic reliability, sampling, and SFE UQ libr
Sandia manager - Martin Pilch, 9133, mpilch@sandia.gov, 845-3047
PI - Steve Wojtkiewicz, 9124, sfwojtk@sandia.gov, 284-
Team members - Mike Eldred, Rich Field, John Red-Horse, Angel Ur

T project (stochastic global optimization):
Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845
PI - Bill Hart, 9211, wehart@cs.sandia.gov, 844-2217
http://www.cs.sandia.gov/~wehart/main.html

 project (mixed integer programming, scheduling and logistic
Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845
PI - Cindy Phillips, 9211, caphill@cs.sandia.gov, 845-72
Team members - Bob Carr, Jonathan Eckstein (Rutgers), Bill Hart, V
http://www.cs.sandia.gov/~caphill/proj/pico.html

+/DDACE/APPS/IDEA projects (NLP, sampling, & pattern sea
Sandia manager - Chuck Hartwig(acting), 8950, hartwi@ca.sandia.go
PI - Juan Meza, 8950, meza@ca.sandia.gov, 294-2425
Team members - Paul Boggs, Patty Hough, Tamara Kolda, Leslea Le

Kevin Long, Monica Martinez-Canales, and Pam W
http://csmr.ca.sandia.gov/~meza/research.html



Current Dakota/UQ Capabilities
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tness Analysis
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Sampling Techniques
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e Carlo-Style (Sampling-based) Analysis:

neral, simple to implement and robust to size and d
blem being investigated

sily wrapped around current deterministic analysis 

mputationally expensive (many function evaluations

o current options:
–Traditional Monte Carlo
–Latin Hypercube Sampling

der investigation:
–Bootstrap Sampling
–Importance Sampling Techniques
–Quasi-Monte Carlo SImulation
–Markov Chain Monte Carlo



Overview of Analytically Based
Rel

• Inv d normal ran-
do

ization problem
 distance func-
ethod.

ble space.

ues about an
p

• Na

• MV
wh
tio

• MV

• FO

• Eq
“o
Engineering Sciences Center

iability Methods

olve a transformation to unit variance, uncorrelate
m variable space.

taf Transformation used in DAKOTA/UQ.

, AMV/AMV+, FORM all solve a constrained optim
ere the objective function is always this minimum
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Probabilistic Robustness Analysis
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Probabilistic Robustness Analysis
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SFEM/Polynomial Chaos Techniques
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proximation of full stochastic representation

timal approximation in inner product spaces,  space
iables.

presents a more general alternative to the Rosenblatt t
n

–avoid assuming full distribution when faced with limited input data

timating coefficients is the key issue
–requires realizations of the function it replaces

nvergence issues
–are there sufficient samples to compute coefficients?

–possibility of non-physical realizations

–mean square convergence

L2



SFEM/Polynomial Chaos Techniques
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Consider PCE of general random process,

, where

– th order polynomial in , where
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Solve for the Fourier coefficients,
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Epistemic Uncertainty
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Epistemic Uncertainty results from a lack of information.

Epistemic Uncertainty manifests itself in several ways

–Uncertainty in parameters for which statistically significant data
not exist

–The form of the model is not known exactly

robabilistic Approach

Variety of approaches investigated:

–Interval analysis
–Possibility Theory
–Evidence Theory (Dempster-Shafer)
–Imprecise Probability
–Probability Bounds
–Interval-valued Probability Distributions
–Convex Sets of Probability Distributions



The Penetrator Problem
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–During the penetration event, predict the probability of compon

–Consider a nonlinear, full-body, 3D, coupled-physics simulatio
probabilistic properties.
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The model, M: a complex, cascaded system

10
2

eq (Hz)

α (deg)h

f )
✓ No
dyn

✓ 50,

✓ Sp
✓ Lo

sim

✓ 33 
sim

Struc

Soil 
Engineering Sciences Center

P

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−400

−300

−200

−100

0

100

200

300

400

10
1

300

400

500

600

700

800

900

1000

Filters

Time (s)
A

cc
el

(g
)

P
ea

k
A

cc
el

(g
)

Natural Fr

D (in)

P
ea

k
A

cc
el

(g
)

nlinear transient
amics FEA
000 DOF

erical cavity expansion
ads couple with mechanics
ulation

LP, SRS

CPU hours per
ulation

✓ 49 total runs performed

✓ Performed simultaneously
on network of Sun Ultra IIs

Component Response

tural Mechanics

Mechanics

Approximate RS Models

u(



Overview of the Shock Response Spectrum (SRS)
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se SRS?

measure of shock severity; indicative of shock damage 

frequency-domain representation of shock response

long history of use in weapon design; test-based spec

used for component qualification - compare to
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UQ analysis of Penetrator System
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o design variables, :
– , angle of attack is a normal random variable with mean 1

and standard deviation of 1.

– , soil depth is a lognormal random variable with mean 25
and standard deviation 16.

ing the results from simulations, build a approximat

ponse surface approximation) for .

X
α

D

u min
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SRSref f i( ) SRS f i( )–( )=
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UQ analysis of Penetrator System
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ply MC/LHS to these surrogate models to evaluate

 and

Response Surface
Approximation Method

MC

Kriging 0.02000/0.02300 0.0200

Splines 0.06900/0.06781 0.0672

Neural Net 0.05024/0.05588 0.0550

Quadratic Polynomial 0.04960/0.05077 0.0507
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ytical Reliability Techniques:

•MV, AMV, AMV+, FORM/SORM

pling techniques:

•Pure Random Sampling (Monte Carlo)

•Stratified Sampling (LHS)

abilistic Robustness Analysis

omial Chaos Expansions/Stochastic Finite Element Technique

e Capabilities:

nced sampling methods:

•Importance Sampling, Bootstrap Sampling,

Quasi-Monte Carlo Sampling, Markov Chain Monte Carlo Sam

traditional uncertainty methodologies
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	Uncertainty Quantification
	Real Physical Systems:
	• Display random and systematic variation- geometry, materials, boundary conditions, initial cond...
	• Vary from one realization to the next
	• Display behavior that cannot be precisely measured

	Uncertainty occurs in various forms:
	• Irreducible, variability, aleatoric
	• Reducible, epistemic, subjective, model form uncertainty


	Uncertainty Quantification
	Useful in:
	• Analysis and Design
	– To assess the reliability of physical systems.
	– To establish designs that satisfy pre-established reliability requirements.
	– To establish sensitivities to key uncertainties

	• Model validation, certification, and accreditation
	– As defined in the DOE Defense Programs (DOE/DP) ASCI Program Plan, validation is the process of...
	– Convey confidence in predictions to decision makers



	Uncertainty Quantification:
	General Framework
	General Description:
	Statistical Approach:
	• Model components of as Random Variables or Fields, and as (possibly) Random External Input
	• Seek quantities such as . However, what is actually obtained are conditional statistics .

	Probabilistic/Statistical Approach: Essential Elements of a Statistical Approach:
	Conclusion: Need a Generalized Outlook.
	Essential Elements of a Statistical Approach:
	• Random External Inputs
	• Propagation Techniques
	– Analytical Reliability Methods; Sampling; Response Surface Approximations; Stochastic Finite El...

	• Characterization of Models
	– Verification and Validation.


	Propagation Techniques (Note: Dependency on M)



	Anatomy of Global Uncertainty
	Anatomy of Global Uncertainty
	Anatomy of Global Uncertainty
	Anatomy of Global Uncertainty

	Uncertainty Quantification at Sandia-NM
	• DAKOTA (Design Analysis Kit for OpTimizAion)/UQ
	– Framework for multi-level, parallel computation: ASCI-level problems, optimization, nondetermin...

	• Polynomial Chaos and Stochastic Finite Elements
	– Analysis of response of stochastic systems

	• Epistemic Uncertainty
	– Non-Probabilistic Approach, Probabilistic Approach, Model Uncertainty

	• Sensitivity Analysis
	Objectives of Toolkit
	Provide uncertainty quantification tools to the analyst community in a unified framework to be us...
	• Discipline independent
	• ASCI (Accelerated Strategic Computing Initiative)-scale problems
	• Minimize number of function evaluations
	• Flexibility in uncertainty model

	Why tie UQ tools to the DAKOTA framework?
	• Existing, proven software framework
	• Successfully linked with over 20 application codes
	• Multilevel parallelism
	• Extensive optimization algorithm library (gradient and non-gradient)
	• Extensive selection of approximation strategies



	DAKOTA toolkit
	Design optimization of engineering applications
	Answer fundamental engineering questions:
	• What is the best design?
	• How safe is it?
	• How much confidence in my answer

	Additional motivations:
	• Reuse tools and interfaces
	• Leverage optimization, UQ, et al.
	• Nonconvex, nonsmooth design spaces Æ state-of-the-art methodologies
	• ASCI-scale applications and architectures Æ scalable parallelism
	• Be a pathfinder in enabling M&S-based culture change at Sandia


	Overview of DAKOTA framework
	Optimization/UQ Projects
	DAKOTA project (optimization with engineering simulations):
	Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845-7471
	PI - Mike Eldred, 9211, mseldre@sandia.gov, 844-6479
	Team members - Tony Giunta, Bill Hart, Bart van Bloemen Waanders
	http://endo.sandia.gov/DAKOTA/
	DAKOTA/UQ project (analytic reliability, sampling, and SFE UQ library):
	Sandia manager - Martin Pilch, 9133, mpilch@sandia.gov, 845-3047
	PI - Steve Wojtkiewicz, 9124, sfwojtk@sandia.gov, 284-5482
	Team members - Mike Eldred, Rich Field, John Red-Horse, Angel Urbina
	SGOPT project (stochastic global optimization):
	Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845-7471
	PI - Bill Hart, 9211, wehart@cs.sandia.gov, 844-2217
	http://www.cs.sandia.gov/~wehart/main.html
	PICO project (mixed integer programming, scheduling and logistics):
	Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845-7471
	PI - Cindy Phillips, 9211, caphill@cs.sandia.gov, 845-7296
	Team members - Bob Carr, Jonathan Eckstein (Rutgers), Bill Hart, Vitus Leung
	http://www.cs.sandia.gov/~caphill/proj/pico.html
	OPT++/DDACE/APPS/IDEA projects (NLP, sampling, & pattern search libraries):
	Sandia manager - Chuck Hartwig(acting), 8950, hartwi@ca.sandia.gov
	PI - Juan Meza, 8950, meza@ca.sandia.gov, 294-2425
	Team members - Paul Boggs, Patty Hough, Tamara Kolda, Leslea Lehoucq, Kevin Long, Monica Martinez...
	http://csmr.ca.sandia.gov/~meza/research.html


	Current Dakota/UQ Capabilities
	Sampling Techniques:
	• Random Sampling (Monte Carlo)
	• Stratified Sampling (LHS (Latin Hypercube Sampling)

	Analytical Reliability Techniques:
	• Mean Value (MV), Advanced Mean Value (AMV/AMV+)
	• FORM (First Order Reliability Method)/SORM (Second Order Reliability Method)

	Robustness Analysis
	Stochastic Finite Element/ Polynomial Chaos Expansions
	Response Surface Approximations:
	• Application of UQ tools to a surrogate function to minimize computational expense.

	Sampling Techniques
	Monte Carlo-Style (Sampling-based) Analysis:
	• General, simple to implement and robust to size and discipline of problem being investigated
	• Easily wrapped around current deterministic analysis capabilities
	• Computationally expensive (many function evaluations)
	• Two current options:
	– Traditional Monte Carlo
	– Latin Hypercube Sampling

	• Under investigation:
	– Bootstrap Sampling
	– Importance Sampling Techniques
	– Quasi-Monte Carlo SImulation
	– Markov Chain Monte Carlo




	Overview of Analytically Based
	Reliability Methods
	• Involve a transformation to unit variance, uncorrelated normal random variable space.
	• Nataf Transformation used in DAKOTA/UQ.
	• MV, AMV/AMV+, FORM all solve a constrained optimization problem where the objective function is...
	• MV and AMV/AMV+ work in the original random variable space.
	• FORM/SORM work in the transformed space.
	• Equivalent to Polynomial Response Surface Techniques about an “optimally” selected expansion point

	Probabilistic Robustness Analysis
	• “Given the bounds on the input parameters, what range of output function is possible?”
	• Pose two global optimization problems:
	such that
	where is the size of uncertain input vector, denote and its lower and upper bounds, respectively.



	Probabilistic Robustness Analysis
	Answer:
	• Recently extended to mixed case of intervals and random variables of unknown dependence (to app...


	SFEM/Polynomial Chaos Techniques
	• Approximation of full stochastic representation
	• Optimal approximation in inner product spaces, space of random variables.
	• Represents a more general alternative to the Rosenblatt transformation
	– avoid assuming full distribution when faced with limited input data

	• Estimating coefficients is the key issue
	– requires realizations of the function it replaces

	• Convergence issues
	– are there sufficient samples to compute coefficients?
	– possibility of non-physical realizations
	– mean square convergence


	SFEM/Polynomial Chaos Techniques
	• Consider PCE of general random process,
	, where
	– th order polynomial in , where
	– function of underlying random variables
	• Solve for the Fourier coefficients,

	can be solved in closed-form
	Epistemic Uncertainty
	• Epistemic Uncertainty results from a lack of information.
	• Epistemic Uncertainty manifests itself in several ways
	– Uncertainty in parameters for which statistically significant databases do not exist
	– The form of the model is not known exactly

	Non-Probabilistic Approach
	• Variety of approaches investigated:
	– Interval analysis
	– Possibility Theory
	– Evidence Theory (Dempster-Shafer)
	– Imprecise Probability
	– Probability Bounds
	– Interval-valued Probability Distributions
	– Convex Sets of Probability Distributions





	The Penetrator Problem
	• Problem statement
	– During the penetration event, predict the probability of component failure,
	– Consider a nonlinear, full-body, 3D, coupled-physics simulation with simplified probabilistic p...

	The model, M: a complex, cascaded system
	Component Response

	Overview of the Shock Response Spectrum (SRS)
	Why use SRS?
	• measure of shock severity; indicative of shock damage potential
	• frequency-domain representation of shock response
	• long history of use in weapon design; test-based spec
	• used for component qualification - compare to



	UQ analysis of Penetrator System
	• Two design variables, :
	– , angle of attack is a normal random variable with mean 1
	and standard deviation of 1.

	– , soil depth is a lognormal random variable with mean 25
	and standard deviation 16.


	• Using the results from simulations, build a approximate model
	��(response surface approximation) for .

	UQ analysis of Penetrator System
	• Apply MC/LHS to these surrogate models to evaluate :
	and

	Summary
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	Analytical Reliability Techniques:
	• MV, AMV, AMV+, FORM/SORM

	Sampling techniques:
	• Pure Random Sampling (Monte Carlo)
	• Stratified Sampling (LHS)

	Probabilistic Robustness Analysis
	Polynomial Chaos Expansions/Stochastic Finite Element Techniques
	Future Capabilities:
	Enhanced sampling methods:
	• Importance Sampling, Bootstrap Sampling,
	Quasi-Monte Carlo Sampling, Markov Chain Monte Carlo Sampling

	Non-traditional uncertainty methodologies


